Temporal alterations in protein signaling cascades during recovery from muscle atrophy.
نویسندگان
چکیده
Currently, the repertoire of cellular and molecular pathways that control skeletal muscle atrophy and hypertrophy are not well defined. It is possible that intracellular regulatory signaling pathways are active at different times during the muscle hypertrophy process. The hypothesis of the given experiments was that cellular signals related to protein translation would be active at early time points of skeletal muscle regrowth, whereas transcriptional signals would be active at later time points of skeletal muscle regrowth. The phosphorylation status of p38 MAPK and JNK increased at the end of limb immobilization but returned to control values at recovery day 3. Transient increases in phosphorylation and in protein concentration occurred during recovery of soleus muscle mass. Phosphorylation of Akt, p70S6k, and signal transducer and activator of transcription 3 (STAT3) peaked on recovery day 3 compared with day 0. Glycogen synthase kinase (GSK)-3beta phosphorylation was increased on the sixth and fifteenth recovery day. In addition, transient peaks in seven protein concentrations occurred at different times of recovery: STAT3, calcineurin A (CaNA), CaNB, and beta4E-BP1 protein concentrations peaked on the third recovery day; p70S6k, STAT3, Akt, and GSK3-beta peaked on the sixth recovery day; and GSK3-beta peaked on the fifteenth recovery day. The apexes of STAT3 and GSK3-beta protein concentrations remained elevated for two recovery time points. Thus the time course of increase in molecules of signaling pathways differed as the young rat soleus muscle regrew from an atrophied state.
منابع مشابه
Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols
Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...
متن کاملComparing the effects of endurance and resistance trainings on gene expression involved in protein synthesis and degradation signaling pathways of Wistar rat soleus muscle
Background: Skeletal muscle mass, which is regulated by a balance between muscle protein synthesis and degradation, is an important factor for movement to meet everyday needs, especially in pathological conditions and aging. The purpose of the present investigation was to compare the alterations of the gene expression involved in muscle protein synthesis and degradation signaling pathways induc...
متن کاملResponsiveness of cell signaling pathways during the failed 15-day regrowth of aged skeletal muscle.
Various cellular signaling pathways, such as phosphatidylinositol 3-kinase, calcineurin, Janus kinase 2/signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) have been suggested to play an important role in skeletal muscle growth. Old muscle, compared with young muscle, lacks the ability to completely regrow its muscle mass after an atrophy-indu...
متن کاملChanges in PKB/Akt and calcineurin signaling during recovery in atrophied soleus muscle induced by unloading.
Protein kinase B [PKB, also known as Akt (PKB/Akt)] and calcineurin (CaN) are postulated to play important roles in integrating intracellular signaling in skeletal muscle in response to disuse and increased muscle loading. These experiments investigated changes in signal transduction of the downstream pathways of PKB/Akt and CaN during recovery following disuse-induced muscle atrophy. A 10-day ...
متن کاملThe shelf-life of conventional surimi and recovery of functional proteins from silver carp (Hypophthalmichthys molitrix) muscle by an acid or alkaline solubilization process during frozen storage
The shelf-life of conventional surimi and isolated proteins that modified by acidic pH (2.5) and by using alkali pH (11) from silver carp (Hypophthalmichthys molitrix) was studied during months of storage at -18±2 °C. For conventional surimi, three washing steps were used. In the third stage of washing, 0.2% NaCl was used to withdraw more water. The result showed that isolated protein by alkali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 285 2 شماره
صفحات -
تاریخ انتشار 2003